LT

Static analysis tool C-STAT

Ensuring code quality through static analysis

Catch issues before they become problems with C-STAT, the static analysis tool fully integrated into
the IAR Embedded Workbench IDE. Effortlessly ensure your code complies with MISRA standards
and hundreds of security checks from CWE and CERT, all without leaving your development
environment.

Key Highlight Features

e Analysis of C and C++ code

e Includes more than 1000 checks in total, some comply with rules as defined by MISRA
C:2023, MISRA C:2012, MISRA C++:2008 and MISRA C:2004

e More than 250 checks mapping to issues covered by CWE, SANS Top25 and OWASP

e Checks compliance with the coding standard CERT C for secure coding

e Fully integrated with the IAR Embedded Workbench IDE and the command-line IAR Build Tools
e Comprehensive and detailed error information

¢ Fast execution

¢ Available for most IAR Embedded Workbench and IAR Build Tools products

e Also available as TUV SUD certified version for selected IAR functional safety editions

C-STAT checks code compliance with industry standards MISRA, CWE and CERT C/C++

C-STAT checks compliance with MISRA rules, CERT C/C++ Secure Coding Standards, and CWE-defined
weaknesses, simplifying compliance with CWE-aligned output.

MISRA (the Motor Industry Software Reliability Association) rules, initially developed for the automotive industry, are
now widely used across embedded systems. MISRA-C:2023 builds on MISRA-C:2012 (and amendments) with
enhanced rules for modern safety and security challenges. The rules are classified as mandatory, required, or
advisory, covering areas like compiler differences, avoiding unsafe functions, limiting code complexity, and ensuring
maintainability.

CWE (the Common Weakness Enumeration)) is a community-developed dictionary of software weaknesses,
detailing potential consequences, mitigations, code samples, and references to help manage vulnerabilities.

CERT provides secure coding rules for C and C++ to prevent coding and design errors that can lead to
vulnerabilities. Each guideline includes a title, description, non-compliant code example, and compliant solutions,
aimed at eliminating insecure practices and undefined behaviors.

terval [DINF]which is out of range .. ATHshifibounds Medi.
terval [DINF] which s outof range .. ATH-shift-bounds dil
= RHS argumentis in interval [0INF]which s outof range .. ATH-shiftbounds Medi,

= W stm32tbochal_adc_exc (5 messages)

o o M Locate Back Fonvard Home Pt
T e B = RHS argumentis ininerval [DINF] which is outof range . ATHehiftbounds — Medil
i Exarnple —— 2 | Fovories IAR S Stem s > m RHS argumentis in interval [0INF] which is out of range .. ATH-shifi-bauncis Medi
W Output Tpe s eyaton i y = RHS argumentis in interval [1INF which is out of range .. ATH-shiftbounds Medi
e — ' RHS argumentis ininterval [DINF] which is outof range . ATH-hiftbounds — Medil

. = RHS argumentis in interval [0INF]which s out of ange .. ATH-shiftbounds Medi
C-STAT checks : Descriptions of checks : ARR-nv-index-ptr-pos = RHS argument e oftenge hiftbounds il

ATHs!

innterval [0INF] which is out of ran

% 1 stm32tbochal_cma.c (27 messages)
= 1 stm32tbochal_flash_ex.c (1 message)

.. ATH-shifthounds

ARR-inv-index-ptr-pos

. i
Synopsis ex [32.33] whi.. ARRin-indexptpos Medi=
Apointerto an array is potentially used outside the m Anisy pointer GRIOX is fox [32. 39 whi pirpos Medil
aray bounds % 1 stm32fbohalroee (22 messages)
5 1 stm32taoc_hal_ree sxe (7 messages)

Enabled by default m RHS argumentis in nterval [DINFJwhich s outof range .. ATH-shifrbounds el
. = RHS argumentis ininterval [1INF] which is outof range . ATH-hiftbounds — Mecil

m RHS argumentis in nterval [DINFlwhich is outof ange .. ATHshiftbounds el

. . m RHS argumentis in interval [DINF] wh ofrange .. ATH-shiftbounds Medi
SeveritylCertainty @ m Possible division by 0. Divisor has po ge[063] ATH-di-D-pos High
% m Possible division by 0. Divisor has potertial range [0,63] ATH-div-0-pos High
% m Possible division by 0. Divisor has potential range [0.7] ATH-div-I-pos High

= 1 sm3 o nucleac (1 message)
m Vlue assignedio vaiable | ‘s ey, RED-unused- Loy

WediumMedium

\
[
Fully integrated into the IDE
C-STAT is fully integrated into the IAR Embedded Workbench IDE, making it as easy to use as standard build tools, with
no need for complex setups. It checks your code against MISRA, CERT, and CWE standards, ensuring safety and
security by referencing all relevant rules. Since these standards complement each other, C-STAT allows you to check
against entire rulesets or individual rules, all thoroughly documented.
ESiE)
Flle Edit View Project Security Simulator Tools Window Help
DOR@ & X 5c Q2 SrECD > AE B®=0 0
Workspace ¥ 3 X |cstatc X mainc — ~
Flash Debug ~] i
Files o . w
EL CodoAnalysi —FlashDebug ———____[/] | int32_t Arr[4] = { 0, 1,2, 3};
2 S app int32_t ArrI = 5;
| Bo_statc - =
| Bmainc
-8 i board
| & Biar_stm32423ii_aca.c - void certl(int i, int *b) {
| ;‘T:Z"‘W‘E 4| int a =i + b[++i]; //Do not depend on the order of evaluation for side effects
| F® B startup_stm32t4292s r'y printf("%d, %d", a, i); // CERT C
|) system_stm32tdbocc Ly
|2 i stdPeriph_Driver
| Library
} s:iagqan,gpmc Hwvoid cert2(void) {
Eﬁizmem static volatile int **ipp;
static int *ip;
statiec volatile int i = 0;
a printf("i = %d.\n", 1i); ipp = &ip; /* May produce a warning diagnostic */
ipp = (int**) &ip:s
a *ipp = &i; //Do not access a volatile object through a nonvolatile reference
ﬁ&[ﬁ if (*ip !'= 0) { /* Vvalid */
VAP VA
Overview ‘CDdEAnalys\s Librany « I A
C-STAT Messages. v o>
Severity: Filter: Messages: 161
Message Check Severity File Line -
11 c_statc (25 messages) c_state
= ™ Signed operation "++i' may overflow CERT-INT32-C_a. High c_statc 14
T .;ESWER'HNTCQ'CJ Ejii?ii I]
® Unspecified execution order between '++i' and other reference(s) o 'i' SPC-order,CERT-EXPI0-C_.a Medium ©_statc 14
2 m Calling standard library function “printf without dete cting and handling errors or casting explicitly t.. CERT-ERR3I3-C_c High c_statc 15
7 .;E(r)ﬂa\hng standard library function “prin" E:zt::i 1:
om c&'"”g'ilfl!aya library function “printf without detecting and handling errors or casting explicitly .. CERT-ERR3I3-C_c High E:ii::i ;g
7 .;Egé”mg standard library function “prin" E:zt::i 2
A if (ipl=0) is false c_statc 26
-szr;néséu\:ddvesswn staticvariable ip' MENM-stack-global CERT-DCL... High E:z::i ;g
@ m The pointer ip is non-volatile and used to access awvolatile object CERT-EXP32-C Lowr c_statc 26
7 .:E\:‘E“\pEU) E:ii::ﬁ ;S
A CERT-EXF32-C c_statc 26
m Format string does notinclude size of string being consumed CERT-STR31-C_a. High c_state 36
= ariable ‘eror_log'is uninitislized SPC-uninitaar-all High c_statc 36
= ® Variable ‘error_log' may be uninitialized CERT-EXP33-C_a High c_statc 36
B .;Egaead of enor_log' E:zt::i gg
= m Calling standard library function ‘sprintf without detecting and handling errors CERT-ERRI3-C_a High c_statc 36 -
Ready Errors 0, Warnings 0 Ln 14, Col 1 UTF-8 CAP NUM OVR ==
IAR Embedded Workbench
IAR Embedded Workbench is a complete C/C++ development toolchain for embedded applications, offering
top-tier code quality, optimized performance, and extensive debugging tools. The integration of C-STAT helps
developers ensure code quality early, reducing errors and speeding up time to market.
Do need to ensure your code is secure, high-quality, and compliant with the
standards?
We're here to support you every step of the way, from project start to product life-cycle completion.
Contact your local IAR team to get started: iar.com/contact!

#

